Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit.
نویسندگان
چکیده
Zinc inhibits NMDA receptor function through both voltage-dependent and voltage-independent mechanisms. In this report we have investigated the role that the NR1 subunit plays in voltage-independent Zn2+ inhibition. Our data show that inclusion of exon 5 into the NR1 subunit increases the IC50 for voltage-independent Zn2+ inhibition from 3-fold to 10-fold when full length exon 22 is also spliced into the mature NR1 transcript and the NMDA receptor complex contains the NR2A or NR2B subunits; exon 5 has little effect on Zn2+ inhibition of receptors that contain NR2C and NR2D. Mutagenesis within exon 5 indicates that the same residues that control proton inhibition, including Lys211, also control the effects of exon 5 on Zn2+ inhibition. Amino acid exchanges within the NR1 subunit but outside exon 5 (E181Q, E339Q, E342Q, N616R, N616Q, D669N, D669E, C744A, and C798A) that are known to decrease the pH sensitivity also decrease the Zn2+ sensitivity, and concentrations of spermine that relieve tonic proton inhibition also relieve Zn2+ inhibition. In summary, our results define the subunit composition of Zn2+-sensitive NMDA receptors and provide evidence for structural convergence of three allosteric regulators of receptor function: protons, polyamines, and Zn2+.
منابع مشابه
High-affinity zinc inhibition of NMDA NR1-NR2A receptors.
Micromolar concentrations of extracellular Zn2+ are known to antagonize native NMDA receptors via a dual mechanism involving both a voltage-independent and a voltage-dependent inhibition. We have tried to evaluate the relative importance of these two effects and their subunit specificity on recombinant NMDA receptors expressed in HEK 293 cells and Xenopus oocytes. The comparison of NR1a-NR2A an...
متن کاملDifferential sensitivity of recombinant N-methyl-D-aspartate receptor subtypes to zinc inhibition.
Zinc has been shown to be present in synaptic vesicles of a subset of glutamatergic boutons and is believed to be core-leased with glutamate at these synapses. A variety of studies have suggested that zinc might play a role in modulation of excitatory transmission, as well as excitotoxicity, by inhibiting N-methyl-D-aspartate (NMDA)-type glutamate receptors. To further investigate the modulator...
متن کاملEffect of acute exposure to ethanol on distribution of NR1 subunit of NMDA receptor of glutamate in cerebral cortex of chick embryo
Introduction: There is considerable evidence that glutamate-mediated excitatory neurotransmission plays an important role in mediating the behavioral actions of acutely administered ethanol. The aim of the present study was to investigate the effect of acute ethanol exposure on NR1 subunit of NMDA (n-methyl-d-aspartate) receptor distribution in the cerebral cortex of chick embryo on the 10th...
متن کاملMolecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors.
Modulation of the N-methyl-d-aspartate (NMDA)-selective glutamate receptors by extracellular protons and Zn(2+) may play important roles during ischemia in the brain and during seizures. Recombinant NR1/NR2A receptors exhibit a much higher apparent affinity for voltage-independent Zn(2+) inhibition than receptors with other subunit combinations. Here, we show that the mechanism of this apparent...
متن کاملSrc potentiation of NMDA receptors in hippocampal and spinal neurons is not mediated by reducing zinc inhibition.
The protein-tyrosine kinase Src is known to potentiate the function of NMDA receptors, which is necessary for the induction of long-term potentiation in the hippocampus. With recombinant receptors composed of NR1-1a/NR2A or NR1-1a/2B subunits, Src reduces voltage-independent inhibition by the divalent cation Zn2+. Thereby the function of recombinant NMDA receptors is potentiated by Src only whe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 16 شماره
صفحات -
تاریخ انتشار 1998